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These notes describe the TreeWASmodel and associated inference algorithms
introduced by Cortes et al. (2017).

1 Model description

Consider a sample of 𝑁 individuals indexed by 𝑖. For each individual 𝑖, we
observe a series of binary indicators 𝑧𝑖𝑗, with 𝑗 = 1,…,𝐽, taking the value 1
if this individual has a particular phenotype and 0 otherwise. The indicators
𝑧𝑖𝑗 are indexed according to a hierarchical tree structure, with each indicator
corresponding to a node in the tree (1, or equivalently 𝐴, is the index of the
root node). In our context, the phenotypic indicators represent an ontology
of diseases, with increasingly specific disease categories as we move down
the tree. We will model these disease indicators 𝑧𝑖𝑗 as being the realised
values of binary random variables 𝑍𝑖𝑗 and denote this output process by
{𝐙𝑖}

𝑁
𝑖=1, with 𝐙𝑖 = (𝑍𝑖𝐴,…,𝑍𝑖𝐽).
We also consider a number of different genetic loci indexed by 𝑠, with

𝑠 = 1,…,𝑆. At a particular locus 𝑠, the categorical indicator 𝐺𝑖𝑠 takes the
value 0 if individual 𝑖 is homozygous for the reference allele at that locus,
the value 1 if they are heterozygous and the value 2 if they are homozygous
for the alternative allele.

For a terminal (or leaf) node 𝑙 in the tree, the probability that the random
variable 𝑍𝑖𝑙 takes value 1 given data 𝐺𝑖𝑠 is assumed to follow a logistic model:

Pr(𝑍𝑖𝑙 = 1|𝑌𝑖𝑙𝑠) =
𝑒𝑌𝑖𝑙𝑠

1+𝑒𝑌𝑖𝑙𝑠
, (1)

where Pr(⋅) is the probability mass function (p.m.f.).¹ 𝑌𝑖𝑙𝑠 is defined for a
subject 𝑖, a terminal node 𝑙 and a variant 𝑠 as follows:

𝑌𝑖𝑙𝑠 =𝛽0
𝑙𝑠+𝛽1

𝑙𝑠𝕀(𝐺𝑖𝑠 = 1)+𝛽2
𝑙𝑠𝕀(𝐺𝑖𝑠 = 2),

¹In a slight abuse of notation, Pr(⋅) may denote either a p.m.f. or a probability density
function (p.d.f.) depending on the context.
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where 𝕀(⋅) is the indicator function, 𝛽0
𝑙𝑠 is the intercept term and 𝛽1

𝑙𝑠 and
𝛽2
𝑙𝑠 are separate coefficients for the heterozygous and homozygous states,

respectively. From now on, we will consider a single generic locus 𝑠 and drop
the subscript to simplify notation.

We associate with each node 𝑗 in the tree a length-3 vector of coefficients
(𝛽0

𝑗 ,𝛽
1
𝑗 ,𝛽

2
𝑗 ) and model the pairs (𝛽1

𝑗 ,𝛽
2
𝑗 ) as evolving down a tree with the

same structure as that of the output process. Given parameter vector (𝜃,𝜋1)
the coefficients of a parent node are inherited with probability 𝑒−𝜃 and
transition to a new pair of values with probability 1−𝑒−𝜃. In the latter case,
the new values are (0,0) with probability 1−𝜋1 while with probability 𝜋1

they are drawn from a joint prior 𝑓(𝛽1
𝑗 ,𝛽

2
𝑗 ). Writing 𝜷𝑗 = (𝛽1

𝑗 ,𝛽
2
𝑗 ), 𝑓(𝜷𝑗) is

assumed to be the following:

𝑓(𝜷𝑗) ∝𝒩2(𝟎,Σ) ⋅ ‖(𝛽
1
𝑗 ,𝛽

2
𝑗 /2)‖

𝑘 ⋅ 𝜖, (2)

where 𝒩2 is a bivariate Normal density with mean vector 𝟎 = (0,0) and
covariance matrix Σ,

Σ= ⎡
⎣

𝜎2
1 𝑟𝜎1𝜎2

𝑟𝜎1𝜎2 𝜎2
2

⎤
⎦

for some 𝜎1 ≥0, 𝜎2 ≥0 and 𝑟 ∈ ℝ, and

𝜖 =
⎧⎪⎪

⎨⎪⎪
⎩

0.1, if 𝛽1
𝑗 𝛽

2
𝑗 <0

0.1, if |𝛽1
𝑗 | > |𝛽2

𝑗 |
1, otherwise.

Note that the p.d.f. in equation (2) is only specified up to a constant of
proportionality. The mixture distribution for 𝜷𝑗 in the case where a child
node does not inherit its parents’ coefficients is denoted by 𝑓∗(𝛽1

𝑗 ,𝛽
2
𝑗 ). This

is also the distribution from which 𝜷𝐴, the vector of coefficients of the root
node, is drawn. Cortes et al. (2017) use the following parameter values:
𝜋1 = 0.001,𝜃 = 1/3,𝜎1 = 2,𝜎2 = 4,𝑘 = 0.5 and 𝑟 = 0.5.

We make no explicit assumption on the evolution of the 𝛽0
𝑗 coefficients.

When fitting the model as we describe in the next section, the intercept term
will be chosen, for each node 𝑗, to maximise the likelihood of the observed
data at that node, 𝐳𝑗 = (𝑧1𝑗,…,𝑧𝑁𝑗). Figure 1 shows an example of the
TreeWAS graphical model.
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𝜷𝐴

𝜷2 𝜷3

𝜷4 𝜷5 𝜷6 𝜷7

𝑍4 𝑍5 𝑍6 𝑍7

Figure 1: Example tree of disease coefficient pairs 𝜷 and terminal disease
indicator nodes 𝑍. Only the realised values of the disease indicators
(shaded in grey) are observed.

Crucially, note that internal nodes are not drawn from a logistic model
like the one specified in equation (1). In fact, internal disease nodes are
not included in the probabilistic graphical model (see Figure 1) and so we
do not write their distribution. While it would be natural to model every
node in the tree through a logistic model as above (this would give us a
Hidden Markov Tree Model (HMTM) (Crouse et al., 1998)) this would not
be compatible with the ontological nature of the disease tree.

To see this, note that the value of every internal node in the disease tree
is uniquely determined by that of its children.² By this argument, we can
say that, conditional on the observed values for its children 𝛾(𝑗), the value
of an internal node 𝑗 is fixed (we can write 𝑧𝑖𝑗 =max{𝑧𝑖𝑘 ∶ 𝑘 ∈ 𝛾(𝑗)} for all
𝑖) which is not compatible with each node being stochastically determined
based only on its 𝜷 coefficient vector.

The TreeWAS model is thus a simplified version of the HMTM model
where only the terminal hidden state nodes have an associated output with
emission distribution specified by equation (1) and only data for the annota-
tions associated with these terminal nodes is used to estimate the model.

²For example, consider a parent node corresponding to respiratory infection whose children
are nodes corresponding to pneumonia, lung abscess and empyema. If an individual has
pneumonia, lung abscess or empyema, then they necessarily have a respiratory infection, and
therefore the parent node will take value 1. On the other hand, if they do not have any of these
three kinds of respiratory infection then the parent node will take value 0.
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2 Model fitting

In fitting the model to data, our first goal is to assess, for each genetic locus,
whether there is evidence of association between variation at that locus and
at least one of the phenotypes in the tree. Having established this, we can
then concentrate on those loci for which such evidence of association exists
and examine the posterior distributions of the different 𝜷𝑗 in their trees.

The first task is one of model comparison between a model under which
no evidence of association exists (i.e. 𝜷𝐣 = (0,0) for all nodes 𝑗 in the tree)
and an alternative model under which there is evidence of association with
at least one phenotype. The latter model encompasses all instances where at
least one coefficient differs from 0.

In keeping with our Bayesian framework, we will use a Bayes Factor
to compare these two models. This requires us to compute the integrated
likelihood (also known as marginal likelihood or model evidence) of our
data under the two scenarios. Defining, for simplicity of notation, a vector
𝜷 ≔ (𝜷𝐴,…,𝜷𝐽) and denoting the terminal output data {𝐳𝑙}

𝑁
𝑙=1 by 𝐳,³ we

write the integrated likelihood for the model of no association, denoted 𝐿∅,
as follows:

𝐿∅ =∫Pr(𝐳,𝜷|𝜷 = 𝟎)𝑑𝜷,

where Pr(⋅) is now a p.d.f. and 𝟎 is a zero vector of length 2𝐽. Since there is
only one way in which all coefficients can be zero, this can be simplified:

𝐿∅ = Pr(𝐳|𝜷 = 𝟎).

In contrast with the model of no association, there are many (in fact,
an infinite number of) ways in which at least one of the model coefficients
can differ from zero. Because of this, directly computing the integrated
likelihood under the alternative model (denoted 𝐿+) would be intractable.
To avoid this issue, we note that the full integrated likelihood 𝐿full, which is
defined as

𝐿full =∫Pr(𝐳,𝜷)𝑑𝜷, (3)

³Note that only the most specific disease categories are included in 𝐳: none of the internal
nodes 𝑧𝑗 are included in this model.
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can be written as the weighted sum of the null model and alternative model
likelihoods:

𝐿full =𝜋∅𝐿∅+(1−𝜋∅)𝐿+, (4)

where 𝜋∅ is the prior probability of all coefficients being zero. For a tree
with 𝐽 nodes, this prior probability is equal to:

𝜋∅ = (1−𝜋1) ⋅ [𝑒
−𝜃+(1−𝑒−𝜃)(1−𝜋1)]

𝐽−1
.

Equation (4) implies that, if we can compute the full and null model likeli-
hoods, we can easily obtain 𝐿+. We can then compute the Bayes Factor to
test the null hypothesis of no association against the alternative hypothesis
of at least one association:

BFtree =
𝐿+
𝐿∅

.

Computing the full integrated likelihood 𝐿full requires numerically eval-
uating a high-dimensional integral, an expensive operation. Cortes et al.
(2017) do this via a recursive algorithm iterating upwards from the terminal
nodes of the tree, which makes the computation much more tractable. A
small modification of this algorithm then allows for computing 𝐿∅.

A short description of the upward recursive algorithm is as follows: we
start by evaluating the likelihood of observing the phenotypic data ̄𝐳𝑙 for
each terminal node 𝑙 on the tree for a grid of 𝜷 values. Moving up one level,
we note that the likelihood of an internal node is equal to the likelihood
of observing all of its children, which are independent of one another.⁴ We
thus compute the parents’ likelihoods for a grid of 𝜷 values by multiplying
those of their children, and in doing so must integrate over all the values of
the children’s 𝜷 coefficients (these are weighted by the prior 𝑓∗(𝜷𝑙)). We
proceed in this manner until reaching the root node. A detailed derivation
of this algorithm is given in Appendix A.

We then turn to the question of how to obtain the posterior distributions
of the 𝜷𝑗 coefficients for those variants for which some evidence of association
is found. This requires a second algorithm which proceeds downwards from
the root node towards the terminal nodes of the tree, described in detail in
Appendix B.

⁴This is because the value of a parent node is uniquely determined by those of its children.
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Together, these two algorithms are very similar to the the Upward-
Downward Algorithm (Crouse et al., 1998) for HMTMs, which in turn is
reminiscent of the Forward-Backward Algorithm used for Hidden Markov
Models. The presentation of the TreeWAS algorithms in Appendices A and B
follows closely that in Durand et al. (2004), although we aim to keep the
notation as consistent as possible with that of Cortes et al. (2017) and account
for the different structure of our graphical model.
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A Upward recursive algorithm

We begin by establishing some additional notation: following Durand et al.
(2004), we define ̄𝑍𝑖𝑗 as the terminal nodes of the subtree of disease indicators
rooted at node 𝑗 for individual 𝑖, so that ̄𝑍𝑖𝐴 is the set of all leaf nodes for
that individual. ̄𝐙𝑗 is then the set of terminal nodes of the subtrees rooted at
𝑗 for all individuals, and as before ̄𝐳𝑗 is their realised value, i.e. the observed
data.

We aim to compute the full integrated likelihood 𝐿full:

𝐿full =∫Pr( ̄𝐳𝐴,𝜷)𝑑𝜷 = Pr( ̄𝐳𝐴).

Applying simple rules of probability, this can also be written as

𝐿full = Pr( ̄𝐳𝐴)

=∫Pr( ̄𝐳𝐴,𝜷𝐴)𝑑𝜷𝐴

=∫Pr( ̄𝐳𝐴|𝜷𝐴)𝑓
∗(𝜷𝐴)𝑑𝜷𝐴. (5)

Following Cortes et al. (2017), we now make two further definitions
which will simplify the notation below. We first define 𝐹𝑗(𝜷𝑗) as the probab-
ility of observing the subtree ̄𝐳𝑗 given only the coefficients 𝜷𝑗 for node 𝑗, that
is:

𝐹𝑗(𝜷𝑗)≔ Pr( ̄𝐳𝑗|𝜷𝑗).

Secondly, and defining 𝜌(𝑗) as the parent node of 𝑗, we define 𝐺𝑗(𝜷𝜌(𝑗)) as
the probability of observing the subtree ̄𝐳𝑗 given only the coefficients 𝜷𝜌(𝑗)

for the parent of node 𝑗, that is:

𝐺𝑗(𝜷𝜌(𝑗))≔ Pr( ̄𝐳𝑗|𝜷𝜌(𝑗)).

This now allows us to simplify equation (5) as follows:

𝐿full =∫𝐹𝐴(𝜷𝐴)𝑓
∗(𝜷𝐴)𝑑𝜷𝐴.

The key point is that, instead of doing high-dimensional integration
to obtain Pr( ̄𝐳𝐴) as in equation (3), we can perform this integration re-
cursively starting from the terminal nodes of the tree. To see this, we
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start by noting that, for a terminal node 𝑙, ̄𝐳𝑙 = 𝐳𝑙. Then, 𝐹𝑙(𝜷𝑙) is simply
equal to Pr(𝐳𝑙|𝜷𝑙). Moreover, assuming independent observations we have
Pr(𝐳𝑙|𝜷𝑙) =∏𝑁

𝑖=1 Pr(𝑧𝑖𝑙|𝜷𝑙).
For an internal node 𝑗, and defining 𝛾(𝑗) as the children of 𝑗, we can

rewrite 𝐹𝑗(𝜷𝑗) as follows:

𝐹𝑗(𝜷𝑗)≔ Pr( ̄𝐳𝑗|𝜷𝑗)

= ∏
𝑘∈𝛾(𝑗)

Pr( ̄𝐳𝑘|𝜷𝑗)

= ∏
𝑘∈𝛾(𝑗)

𝐺𝑘(𝜷𝑗).

We now note that 𝐺𝑘(𝜷𝑗) can also be rewritten:

𝐺𝑘(𝜷𝑗)≔ Pr( ̄𝐳𝑘|𝜷𝑗)

=∫Pr( ̄𝐳𝑘,𝜷𝑘|𝜷𝑗)𝑑𝜷𝑘

=∫ Pr( ̄𝐳𝑘|𝜷𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝐹𝑘(𝜷𝑘)

Pr(𝜷𝑘|𝜷𝑗)𝑑𝜷𝑘, (6)

where the last equality follows from the HMTM setup, which implies that
the terminal phenotypes 𝑍𝑖𝑘 are independent (for all 𝑖) of the coefficients
of their associated parent coefficients, in this case 𝜷𝑗, when conditioned on
their own associated coefficients 𝜷𝑘.

The model setup described in Section 1 also implies the following expres-
sion for Pr(𝜷𝑘|𝜷𝑗):

Pr(𝜷𝑘|𝜷𝑗) = 𝑒−𝜃𝛿(𝜷𝑘−𝜷𝑗)+(1−𝑒−𝜃)𝑓∗(𝜷𝑘),

where 𝛿(⋅) is the Dirac delta function. Equation (6) then becomes:

𝐺𝑘(𝜷𝑗) =∫𝐹𝑘(𝜷𝑘)[𝑒
−𝜃𝛿(𝜷𝑘−𝜷𝑗)+(1−𝑒−𝜃)𝑓∗(𝜷𝑘)] 𝑑𝜷𝑘

= 𝑒−𝜃∫𝐹𝑘(𝜷𝑘)𝛿(𝜷𝑘−𝜷𝑗)𝑑𝜷𝑘+(1−𝑒−𝜃)∫𝐹𝑘(𝜷𝑘)𝑓
∗(𝜷𝑘)𝑑𝜷𝑘. (7)

Noting that

∫𝐹𝑘(𝜷𝑘)𝛿(𝜷𝑘−𝜷𝑗)𝑑𝜷𝑘 =𝐹𝑘(𝜷𝑗) = Pr( ̄𝐳𝑘|𝜷𝑗),⁵
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and defining a new function 𝐿𝑘 as

𝐿𝑘 ≔∫𝐹𝑘(𝜷𝑘)𝑓
∗(𝜷𝑘)𝑑𝜷𝑘,

equation (7) becomes

𝐺𝑘(𝜷𝑗) = 𝑒−𝜃𝐹𝑘(𝜷𝑗)+(1−𝑒−𝜃)𝐿𝑘.

To summarise, these are the key equations of the upward recursive
algorithm used to compute the full integrated likelihood 𝐿full:

𝐿full =∫𝐹𝐴(𝜷𝐴)𝑓
∗(𝜷𝐴)𝑑𝜷𝐴 (8)

𝐹𝑙(𝜷𝑙) = Pr(𝐳𝑙|𝜷𝑙), for a terminal node 𝑙 (9)

𝐹𝑗(𝜷𝑗) = ∏
𝑘∈𝛾(𝑗)

𝐺𝑘(𝜷𝑗), for an internal node 𝑗 (10)

𝐺𝑘(𝜷𝑗) = 𝑒−𝜃𝐹𝑘(𝜷𝑗)+(1−𝑒−𝜃)𝐿𝑘 (11)

𝐿𝑘 =∫𝐹𝑘(𝜷𝑘)𝑓
∗(𝜷𝑘)𝑑𝜷𝑘. (12)

The algorithm is then as follows:

1. Initialise by computing 𝐹𝑙(𝜷𝑙) for all the terminal nodes in the tree us-
ing equation (9). This involves computing Pr(𝐳𝑙|𝜷𝑙) for each terminal
node 𝑙 for a grid of values for 𝜷𝑙 = (𝛽1

𝑙 ,𝛽
2
𝑙 ).

As mentioned above, 𝛽0
𝑙 is chosen, for each value of 𝜷𝑙 = (𝛽1

𝑙 ,𝛽
2
𝑙 ),

to maximise the likelihood for our logistic model. Since maximum
likelihood estimation of the logistic regression model does not have
a closed form solution, this must be done numerically for each pair
𝜷𝑙 = (𝛽1

𝑙 ,𝛽
2
𝑙 ) in the grid.

For each terminal node 𝑙, also compute 𝐿𝑙 using equation (12) and
𝐺𝑙(𝜷𝜌(𝑙)) for a grid of values for 𝜷𝜌(𝑙) using equation (11);

2. Move up one level and compute 𝐹𝜌(𝑙)(𝜷𝜌(𝑙)) using equation (10).

Also compute 𝐿𝜌(𝑙) and 𝐺𝜌(𝑙) for a grid of values as before;

3. Continue recursively in this way until reaching the root node and
obtaining 𝐹𝐴(𝜷𝐴);

4. Finally, evaluate equation (8) to obtain 𝐿𝐴 = 𝐿full.

⁵This is known as the sifting property of the delta function.
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Note that, using this algorithm, we integrate only over two variables (the
different 𝜷𝑗 pairs) at a time. In choosing the 𝛽0 coefficients to maximise the
likelihood, we avoid having to also integrate over them.

Finally, we compute the likelihood of all leaf disease nodes taking value
0, i.e. 𝐿∅ = Pr( ̄𝐳|𝜷 = 𝟎), as follows:

𝐿∅ =∏
𝑙∈𝑇

Pr(𝐳𝑙|𝜷𝑙 =𝟎).

B Downward recursive algorithm

The upward recursion algorithm described in the previous section allows us
to compute the full and null likelihoods and, consequently, the likelihood
for the model of at least one association. As described above, this can then
be used to obtain a Bayes Factor for assessing, for each genetic locus, the
evidence of association between this locus and any of the terminal node
phenotypes in the tree. Having identified those loci for which such evidence
exists, we proceed to deriving the posterior distributions of the different 𝜷𝑗

coefficients for these loci. This in turn allows us to quantify the evidence of
association between a variant and specific disease phenotypes.

We now describe the downward recursion algorithm used to obtain the
posterior distributions of the model’s coefficients. First, for a node 𝑗, the
posterior distribution of 𝜷𝑗 given the data for all terminal nodes ̄𝐳𝐴 can be
written as follows:

Pr(𝜷𝑗| ̄𝐳𝐴) =
Pr(𝜷𝑗, ̄𝐳𝐴)
Pr( ̄𝐳𝐴)

. (13)

Since we now know how to obtain Pr( ̄𝐳𝐴) = 𝐿𝐴, by computing the joint
distribution Pr(𝜷𝑗, ̄𝐳𝐴) we can obtain the posterior of 𝜷𝑗.

Again following Durand et al. (2004), if 𝑍𝑖𝑘 is a proper subtree of 𝑍𝑖𝑗,
we define ̄𝑍𝑖𝑗∖𝑘 as the leaf indicators of the subtree rooted at node 𝑗 for
individual 𝑖 except for the leaf nodes of the subtree rooted at 𝑘 for the same
individual. Then, ̄𝐳𝐴∖𝑗 is all the observed data except for that of subtree ̄𝐳𝑗.

We can then rewrite Pr(𝜷𝑗, ̄𝐳𝐴) as follows:

Pr(𝜷𝑗, ̄𝐳𝐴) = Pr(𝜷𝑗, ̄𝐳𝑗, ̄𝐳𝐴∖𝑗)

= Pr( ̄𝐳𝑗|𝜷𝑗, ̄𝐳𝐴∖𝑗)Pr(𝜷𝑗, ̄𝐳𝐴∖𝑗)

= Pr( ̄𝐳𝑗|𝜷𝑗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝐹𝑗(𝜷𝑗)

Pr(𝜷𝑗, ̄𝐳𝐴∖𝑗), (14)
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where the last equality follows from the fact that ̄𝐙𝑗 is independent of ̄𝐙𝐴∖𝑗

when conditioned on 𝜷𝑗. By defining a further function

𝐵𝑗(𝜷𝑗)≔ Pr(𝜷𝑗, ̄𝐳𝐴∖𝑗),

we can write Pr(𝜷𝑗, ̄𝐳𝐴) simply as

Pr(𝜷𝑗, ̄𝐳𝐴) = 𝐹𝑗(𝜷𝑗)𝐵𝑗(𝜷𝑗). (15)

We now show how 𝐵𝑗(𝜷𝑗) can be computed through a downward recur-
sion from the root towards the terminal nodes of the tree. For any node
other than the root node 𝐴, we have:

𝐵𝑗(𝜷𝑗)≔ Pr(𝜷𝑗, ̄𝐳𝐴∖𝑗)

=∫Pr(𝜷𝑗,𝜷𝜌(𝑗), ̄𝐳𝐴∖𝜌(𝑗), ̄𝐳𝜌(𝑗)∖𝑗)𝑑𝜷𝜌(𝑗)

=∫ Pr(𝜷𝑗|𝜷𝜌(𝑗))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑞(𝜷𝑗,𝜷𝜌(𝑗))

Pr(𝜷𝜌(𝑗), ̄𝐳𝐴∖𝜌(𝑗), ̄𝐳𝜌(𝑗)∖𝑗)𝑑𝜷𝜌(𝑗),

where we denote the transmission distribution of 𝜷𝑗 given its parent 𝜷𝜌(𝑗) by
𝑞(𝜷𝑗,𝜷𝜌(𝑗))≔ Pr(𝜷𝑗|𝜷𝜌(𝑗)). Applying the definition of conditional probability
and noting that ̄𝐙𝜌(𝑗) is independent of ̄𝐙𝐴∖𝜌(𝑗) when conditioned on 𝜷𝜌(𝑗),
we have:

𝐵𝑗(𝜷𝑗) =∫𝑞(𝜷𝑗,𝜷𝜌(𝑗))Pr( ̄𝐳𝜌(𝑗)∖𝑗|𝜷𝜌(𝑗), ̄𝐳𝐴∖𝜌(𝑗)) Pr(𝜷𝜌(𝑗), ̄𝐳𝐴∖𝜌(𝑗))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝐵𝜌(𝑗)(𝜷𝜌(𝑗))

𝑑𝜷𝜌(𝑗)

=∫𝑞(𝜷𝑗,𝜷𝜌(𝑗))Pr( ̄𝐳𝜌(𝑗)∖𝑗|𝜷𝜌(𝑗))𝐵𝜌(𝑗)(𝜷𝜌(𝑗))𝑑𝜷𝜌(𝑗). (16)

Since the phenotypic child subtrees of a node are independent of one another
and of the parent node when conditioned on the parents’ coefficients, we
have the following:

𝐵𝑗(𝜷𝑗) =∫𝑞(𝜷𝑗,𝜷𝜌(𝑗))

=𝐹𝜌(𝑗)(𝜷𝜌(𝑗))

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞Pr( ̄𝐳𝜌(𝑗)|𝜷𝜌(𝑗))
Pr( ̄𝐳𝑗|𝜷𝜌(𝑗))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝐺𝑗(𝜷𝜌(𝑗))

𝐵𝜌(𝑗)(𝜷𝜌(𝑗))𝑑𝜷𝜌(𝑗) (17)

=∫𝐵𝜌(𝑗)(𝜷𝜌(𝑗))𝑞(𝜷𝑗,𝜷𝜌(𝑗))
𝐹𝜌(𝑗)(𝜷𝜌(𝑗))
𝐺𝑗(𝜷𝜌(𝑗))

𝑑𝜷𝜌(𝑗).
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Since computing 𝐵𝑗(𝜷𝑗) requires us to first compute 𝐵𝜌(𝑗)(𝜷𝜌(𝑗)), the
𝐵𝑗(𝜷𝑗) can be computed in a downward recursion starting from the root
node, with 𝐵𝐴(𝜷𝐴) = Pr(𝜷𝐴) = 𝑓∗(𝛽𝐴).

Finally, having computed 𝐵𝑗(𝜷𝑗) for a particular node 𝑗, we can see from
equations (13) and (15) that the posterior Pr(𝜷𝑗| ̄𝐳𝐴) can be computed as
follows:

Pr(𝜷𝑗| ̄𝐳𝐴) =
𝐹𝑗(𝜷𝑗)𝐵𝑗(𝜷𝑗)

𝐿𝐴
.
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